Pasadena, California

Cloud Properties from AIRS: Cirrus, and initial comparisons to CloudSat

by Brian Kahn

AIRS Science Team Meeting Greenbelt, MD September 28th, 2006

Outline

- Fast model retrievals of thin cirrus cloud optical depth (τ_{VIS}) and effective diameter $(D_{\rm e})$
 - An illustrative AIRS granule
 - Global oceanic ± 30° latitude statistics for September 6th, 2002
 - Version 4 versus 5
 - Comparison to MODIS Collection 4 operational τ_{VIS} and D_e
- Initial comparisons of AIRS operational cloud fields to CloudSat
 - A few vertical x-sections of AIRS cloud top height (Z_C) and effective cloud fraction (f) for both layers
- Ongoing and future work

The fast retrieval approach

- Combine OPTRAN clear-sky radiances with a thin cirrus parameterization
 - Clear + cloudy sky used to fit AIRS radiances [Yue et al., J. Atmos. Sci. 2006]
- Cirrus represented by series of D_e distributions using assumed habit models
 - Here we use Baum et al. [2005] models
- Minimize χ^2 of observed and simulated AIRS radiances: best τ_{VIS} and D_e
- Valid for ice clouds with:
 - $\tau_{VIS} \le 1.0$ (retrieved using thermal IR, but converted to visible optical depth)
 - 10 μ m $\leq D_e \leq 120 \mu$ m
 - Single-layered cloud (according to AIRS)
- Explore relationships between T_C , D_e , τ_{VIS} , etc.
 - An example granule
 - Global oceans ±30° latitude

AIRS

Atmospheric Infrared Sounder

An Illustrative Granule: September 6th, 2002, granule 10

 $T_b @ 960 \text{ cm}^{-1}(K)$

Upper CTP (hPa)

Optical depth (left) and effective diameter (right) retrievals

AIRS SOURCE WE THAN

Atmospheric Infrared Sounder

Minimum χ^2 versus optical depth and effective diameter

Minimum χ^2

Minimum χ^2 vs. τ_{VIS}

Minimum χ^2 vs. D_e (μ m)

In situ r_e-T_C Relationships

Fig. 1. Estimates of the ratio of ice water content to extinction from earlier studies.

- IWC/ σ used as a proxy for r_e
- Increasing r_e with T_C
- Significant differences from different in situ campaigns and modeling studies
- Use to compare against AIRS

TOVS Path B De-T Relationships

- TOVS Path-B + ECMWF re-analysis (left)
- Generally increasing D_e with T_C
 - However, not necessarily true of thinnest cloud in tropics!
 - Same pattern seen with AIRS retrievals (below)
- TOVS $D_e > AIRS D_e$

AIRS Devs. Tc for Varying Optical Depth (V4)

Middle curve: Garrett et al. [2003] T_C vs. r_e; 1-σ curves on either side

AIRS De vs. Tc for Varying Optical Depth (V4, alt channel list)

Middle curve: Garrett et al. [2003] T_C vs. r_e; 1-σ curves on either side

AIRS D_e vs. T_C for Varying Optical Depth (V5)

Middle curve: Garrett et al. [2003] T_C vs. r_e; 1-σ curves on either side

AIRS De vs. Tc for Varying Tc Error (Version 5)

Summary of Thin Cirrus Tendencies

- Two D_e modes (10–15; 25–50 μ m) at lowest τ_{VIS}
- Smallest mode fades away at larger τ_{VIS} ; larger mode increases in D_e with τ_{VIS}
- Small D_e mode composed of mixture of small and large T_C error: probably a real feature, but less robust than larger D_e mode
 - Version 4 and 5 comparisons + channel sensitivity highlight tenuous nature of small $D_{\rm e}$ mode
- Variable correlation of τ_{VIS} and T_C across various ranges of D_e

MODIS and AIRS Optical Depth

- Collocated, single-layer (according to AIRS), ECF \leq 0.4 only
- For Granule 11 on September 6th, 2002 only
- AIRS clouds optically thinner and colder than MODIS
- Most MODIS retrievals warmer than 280 K: water clouds

MODIS and AIRS Particle Size

- AIRS and MODIS see two particle modes, but AIRS with $D_e = 10-15 \ \mu m$
- MODIS $r_e = f(T_C)$ near 20 μ m
- Also hint of third large mode in AIRS for similar particle size as MODIS

CloudSat Cloud Mask + AIRS 2-layer Clouds

Isolated tropical convection

CloudSat Cloud Mask + AIRS 2-layer Clouds

CloudSat Cloud Mask + AIRS 2-layer Clouds

Subtropical low and midlevel cloudiness

CloudSat Cloud Mask + AIRS 2-layer Clouds

CloudSat Cloud Mask + AIRS 2-layer Clouds

Scattered Cbs and Ci

Summary and Conclusions

- Thin cirrus retrievals reveal bi-modal particle size behavior; not inconsistent with tropical cirrus clouds
 - Uniform, tenuous, laminar, small particle size > 15 km
 - Thicker, structured, larger particle size < 15 km (e.g., *Comstock et al., J. Geophys. Res.* [2002])
 - Need to explore why bi-modal in AIRS, not as much as in situ data
- Matched-up MODIS cirrus retrievals show systematic differences to AIRS
 - Larger optical depth and particle size at lower altitudes
 - AIRS picks up mode near 10-15 µm, MODIS does not
- CloudSat comparisons reveal usefulness of 2-layer AIRS clouds
 - CALIPSO will better determine validity of small particle mode in AIRS

Current and Future Work

- Retrieve thin cirrus properties for longer time periods
 - Differences for land/ocean, day/night, V4 and V5, channel selection, etc.
 - Seasonal, regional, latitudinal dependencies?
 - Further comparisons to MODIS: IR versus VIS/near-IR retrieval methods
- Collaboration with UCLA, modification to include scattering
 - How do results change with different sampling of cirrus clouds (e.g., thin vs. thin+thick)?
 - Further comparisons to in situ, satellite data (e.g., MODIS)
 - Cirrus retrievals in V6 as suggested by L. Strow?
- Further comparisons with CloudSat as more data is released
 - Global statistics, IWC/LWC profiles, cloud typing
 - Fold in CALIPSO data
 - Fold in MODIS to understand heterogeneity, cloud type sensitivity, etc.